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The mean rise velocity of pairwise-interacting 
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This paper is concerned with calculations regarding a collection of small gas bubbles 
rising under buoyancy in a clear liquid. For dilute mixtures interactions can be 
restricted to those between two bubbles. In the analysis of binary interactions it is 
assumed that the Reynolds number for relative motion between bubbles and liquid is 
large, that surfactants, if present, do not modify the condition of zero tangential stress 
at the bubble-liquid interface, and that bubbles bounce at an encounter. 

A two-bubble probability density is derived from the analysis, valid on a short 
timescale associated with the interaction. It is shown that on a long timescale, based 
on viscous dissipation, clustering together of pairs takes place, most likely even when 
triple encounters are allowed for. An analysis is given of the vertical motion of pairs, 
followed by a calculation of the mean vertical bubble velocity with help of the (short 
timescale) probability density function. The result is compared with experimental data. 

1. Introduction 
Anyone who observes collections of small air bubbles rising in water will notice the 

erratic motion of individual bubbles. This is due in part to shape oscillations. For 
isolated bubbles rising under buoyancy this happens when the size exceeds a critical 
value. With a suspension of bubbles the erratic motion also occurs under conditions in 
which a bubble, when isolated, would follow a purely vertical path. The deviations of 
the trajectory from a straight line are caused by hydrodynamic interactions between the 
bubble considered and other ones. 

The motion of other bubbles generates a flow field which exerts a pressure force and 
a viscous force on the test bubble. These forces have a stochastic character and result 
in stochastic motion of individual bubbles. Further they lead to deformation of the test 
bubble. Both the forces and the deformation depend in such a complicated way on the 
flow field that it is very hard, if not impossible, to describe these in terms of flow 
parameters. 

We shall start with assuming that the bubbles are small enough for surface tension 
to keep them spherical. After having obtained results for spherical bubbles, we shall 
discuss the influence of deformations. Further we shall assume that surfactants occur 
in low enough concentration to permit the condition of zero tangential shear stress on 
the bubbles. When in addition the diameter of the bubbles is of the order of 1 mm, the 
Reynolds number for the relative motion is of the order lo* and the flow field can with 
sufficient accuracy be described by potential flow theory. 

These assumptions have been made previously in work on bubbly flow, e.g. in 
Biesheuvel & van Wijngaarden (1984). In that paper average hydrodynamic equations 
were derived in such very dilute suspensions that the average velocity of rise is equal 
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to the speed of rise of an isolated bubble. Further, it is well known that for low 
concentration binary interactions dominate, and that this leads to a correction term of 
the form ha, where h is a constant and a is the volume fraction of the bubbles. Hence, 
at low concentration, and denoting by U, the velocity of rise of an isolated bubble, one 
expects the average velocity of rise of a dilute suspension to behave as 

U,( 1 -ha). 

However, experiments by Kapteyn (1989), and also van Wijngaarden & Kapteyn 
(1990), show for 0.02 < a < 0.15 ii behaviour 

V( 1 - ha), 

where the constant V is less than Urn. In the interval 0 < a < 0.02, the average velocity 
of rise seems to decrease more rapidly than linearly with a, a behaviour which awaits 
explanation. Anyway, both the experiments by Kapteyn and by others, such as Boure 
(1988), show for low a, in our case 0.02 < a < 0.15, a linear term in the average 
velocity of rising. 

In order to calculate this average velocity, or other average quantities, it suffices at 
low values of a to know the two-particle probability distribution function (Batchelor 
1974). For this the dynamics of two-particle interactions have to be investigated. This 
has been done in work by Biesheuvel & van Wijngaarden (1982), Biesheuvel(l984) and 
recently in Kok (1989). Some results of the work by Kok (1989) will be discussed in $2. 
They will enable us in $6 to find an approximate expression for the pair probability 
distribution function. This will be used to calculate the average velocity ( u )  of a bubbly 
suspension for low concentration ,z. The result will be compared with experiments. 

Hence, three stages can be distinguished in this paper. In the first the dynamics of 
interactions in pairs is considered. In the second an equilibrium probability distribution 
function is derived. In the third stage the dynamics of vertical motion is dealt with. 

2. The relative motion in a pair of bubbles 
Imagine a large cylindrical vessel with radius R, in which a large number of bubbles 

rise under buoyancy. We assume that all bubbles have the same size (we disregard the 
growth in size in the vertical direction due to decreasing hydrostatic head). The volume 
concentration of the bubbles (a) is uniform. Owing to the erratic paths of the bubbles 
any transport quantity can be known only as a mean, or average quantity. For the 
calculation of the average velocity of rising we may consider the velocity of a test 
bubble in the presence of all others. For low a the configuration of all other bubbles 
can be reduced to just one other bubble in order to obtain results correct to order a 
(Batchelor 1972, 1974). The reason for this is that the probability of finding another 
particle in a sphere around the test particle with radius comparable with the bubble 
radius is of order a, the probability to find two bubbles there of order a*, etc. One may 
therefore restrict to interactions between two bubbles. 

Trajectories followed by pairs in their phase space were calculated by Biesheuvel 
(1984) for inviscid fluid. Even .without viscous forces, this can only be done 
numerically. Numerical calculations that include viscous forces were made by Kok 
(1989). Since we shall use some of his results we shall briefly describe his work here. The 
envisaged configuration is sketched in figure 1. 

Two spherical bubbles with radius a, immersed in liquid, have their line of centres 
at an angle 8 with the vertical direction. At time t = 0 they are released with an initial 
angle 8,. The distance between the bubbles is denoted by 2R. We assume that the 
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FIGURE 1 .  A bubble pair rising in water under buoyancy. They have radius a, are separated by a 
distance 2R, while their line of centres is at an angle 0 with the direction of gravity, indicated g. 

influence of surfactive agents on the boundary condition at the interface between gas 
and liquid can be neglected. Then, in view of the negligibly small viscosity of the gas 
inside the bubbles, the tangential stress at the interface must vanish. The viscous force 
on a rising bubble, under the further assumption of a Reynolds number large enough 
to make inertia forces dominate over viscous forces, was calculated by Levich (1962) 
and by Moore (1963, 1965) from the dissipation in the liquid. For vanishingly small 
values of a / R  the equilibrium velocity of rising follows from the viscous force, given 
by Lmich as 

where ,u is the dynamic viscosity of the liquid. The buoyancy force is 
12lcpaU ,, (2.1) 

%+g, 

where p is the density of the fluid and g the acceleration due to gravity. Introducing the 
kinematic viscosity of the liquid (v), it follows that 

U, = ga2/9v. (2.2) 

It follows that the Reynolds number is gu3/9v2. For water and air bubbles of 1 mm 
radius this is lo2 approximately, which is large enough for Levich's result to be valid. 
With two bubbles in interaction the vertical velocity, u say, of the centre of mass 
fluctuates about a value which is close to U,. 

Under these conditions the velocities in the fluid around the bubbles can be derived 
from a flow potential. This was given by, among others, van Wijngaarden (1976) as an 
infinite series of spherical harmonics in terms of 8 and a / R  and centred in one of the 
bubbles in a pair. This allows calculation of the kinetic energy in the liquid. By an 
extension of the work of Moore (1963, 1965) it is possible to derive the viscous forces 
on each of the bubbles from the calculated dissipation in the liquid. This, in contrast 
to the case of the flow past solid bodies, takes place in the whole of the liquid and not 
mainly in the boundary layer. Starting from expressions for the kinetic energy and for 
the dissipation, both derived from the velocity potential, Kok (1989) used Lagrange's 
principle to derive equations of motion, both for the relative motion as well as for the 
centre of mass. Subsequently he solved these equations numerically for various values 
of the initial angle B0 and the initial rising velocity uo. 

In figure 2 some paths are shown of one bubble with respect to another located at 
3 FLM 251 
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FIGURE 2. Numerically calculated trajectories of one bubble in a pair with respect to the other, in 
relative motion following their release in stagnant water. The initial separation is 2R,, the initial angle 
of the line of centres with the vertical direction is 8,. In the expansion in terms of ( a / R )  50 terms are 
taken into account. The Reynolds number is 200 in all pictures. The unit distance along the axes 
corresponds with the bubble radius. The arrows indicate the direction of movement along the 
trajectories. (a)  8, = 15", 2R, = 4a; (b)  8, = 80", 2R, = 6a;  ( c )  19, = 60", 2R, = 8a; ( d )  8, = 30", 
2R, = 4a. 

the origin in the figure, for uo = U,. From these examples and from computations of 
other trajectories we conclude that there are two types of trajectory: (i) trajectories as 
in figure 2(a)  such that separation always grows, albeit eventually at a vanishingly 
small rate; (ii) trajectories as in figure 2(b) ,  2 (c)  and 2 ( d ) ,  such that two bubbles come 
together along the line B = :n, sometimes after an initial separation. In these 
calculations terms up to and including (a/R)'O are taken into account. At the present 
author's request Dr Kok was kind enough to repeat the numerical calculations, this 
time leaving out terms in the interaction force of order ( a / R ) 5  and higher. The 
difference between the result of thelse calculations and the previous ones that included 
terms of order (u/R)~O is so small t.hat it can hardly be shown in a figure. Taking into 
account these extremely small differences we adopt in the following the approximation 
of leaving out terms in the force balance of order (a/R)' and higher. This allows a 
partly analytical treatment. Terms in the expression for the potential can be associated 
with multipoles. The present approximation amounts to taking into account the 
dipoles and neglecting multipoles of higher order. 
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The equation for the relative motion of two bubbles describes the balance between 
inertia forces (effect of virtual mass), attractive/repulsive forces (due to pressure terms 
other than the a/at term in Bernoulli's equation) and viscous forces. The ratio between 
the inertia forces and viscous forces contains a relaxation time. Leaving aside 
deviations from spherical shape, the virtual mass of an isolated bubble is 

m = $pa3. (2.3) 

The frictional force on an isolated bubble with velocity Urn is given by (2.1). The 
relaxation time is therefore 

For a bubble with a = 1.5 x m rising in water, T = 0.125 s. For a bubble with a = 
s. We can, as these examples show, 

consider T to be typically of order 1 0 - l ~ .  The strength of the dipole depends on the 
vertical velocity of the centre of mass of the pair, which we denote by u, as well as on 
the velocity of this centre in a horizontal plane. The latter is, in a rising mixture, 
negligibly small in comparison with the vertical velocity. Without viscous terms the 
equations for the relative motion, describing the change of R and of 6, were given in 
Biesheuvel & van Wijngaarden (1982). Complemented with viscous terms they are, as 
given in Kok (1989), 

m the corresponding value for T is 6 x 

sin 26. 
d26 dRd6 - d6 9 a3u2 R-+~--+T 'R- = -- 
dt2 dt dt dt 32 R4 

The velocity u in the vertical direction is close to Urn; the difference is of order 
U ,  a3/R3. This difference leads, when inserted in the right-hand side of (2.5) and of 
(2.6), to terms of order (a/R)', which are negligibly small in the present approximation. 
We may replace u by U,, therefore, in the right-hand sides of (2.5) and (2.6). The 
interaction between the bubbles has a timescale a/U, .  The ratio between this and the 
viscous relaxation time T appears naturally when we make (2.5) and (2.6) dimensionless 
with the relations 

In terms of y and T, (2.5) and (2.6) become 

R = ay, t = Ta/U,. (2.7) 

(2.8) 
9 1 dy dg 9 3cos28-1 r -  - -_ -  +g-l-=- 2- 16q4(dT) d T  32 q4 ' 

The new parameter cr in these dimensionless equations is the ratio of the relaxation 
time 7 and the interaction time a /U, :  

cr = Urn T/a. (2.10) 

(Note that, apart from a numerical factor, cr is the Reynolds number.) It is in general 
a quantity of order lo2. A typical velocity of rise is Urn = 0.3 m/s. Taking a - m 
and T - lo-' m, we have cr = 30. 

1"  
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Since v-l is a small quantity, one could start with neglecting the viscous terms and 
take v-' = 0. This was done in Biesheuvel & van Wijngaarden (1982). In that case a// 
trajectories lead eventually to contact. In the range 0 < 8 < in, the rate of change 
d8/dT is positive, with v-' = 0, as follows from (2.9). For n > H > in the line of centres 
is rotated back to 8 = in. Hence, the value 8 = in is a stable equilibrium position. This 
follows also from linear stability analysis of (2.8) and (2.9). The central component of 
the interaction force is attractive when 8 > cos-' d3 and therefore the two bubbles in 
a pair end up by approaching each other along a line inclined to gravity at an angle in 
the vicinity of 8 = an. 

The action of viscosity does not: essentially change this. The only difference is that 
for angles 8 in the range 0 < 8 < cos-I 1 / 3  the separation grows very slowly. Analysis 
of (2.8) shows that for t % 7,  

The growth rate is therefore small. (In the numerical experiments the timescale is not 
long enough and the motion, as in  figure 2(a), apparently ceases.) Nevertheless, for 
these starting positions also, the angle 8 ends up in the vicinity of 8 = in. This means 
that the value 8 = in has a much higher probability than other values of 8. In the 
following we shall disregard positions with the line of centres at angles other than in. 
This amounts to taking all the lines of centres in a horizontal plane. This certainly 
affects the results quantitatively. The numerical simulations show that when a bubble 
comes within the region of influence of another, their line of centres turns into a 
horizontal position in a time equal to a multiple of a /Ulc .  During this period the line 
of centres is not horizontal and such positions are neglected here. Qualitatively this will 
not affect the outcome much because, once the line of centres is horizontal, it remains 
so. This means that within the lifetime of a pair the time in which the line of centres 
is not in a horizontal plane forms a negligible fraction. 

We have seen that eventually all binary interactions lead to contact. This brings us 
to the important question of what happens when two bubbles meet. 

T#l - ai(t/7)'. 

3. Phenomena at the close encounter of two bubbles 
Together with the numerical simulation, Kok (1989) carried out experiments with 

pairs of bubbles to verify the theory. He found that the actual trajectories are fairly well 
predicted by the theory which we have discussed in $2. In this section we discuss the 
interesting phenomena which Kok found regarding close encounters. 

Figure 3 shows two pictures, one concerning the encounter of two bubbles in 
hyperfiltrated water, the other in singly filtrated water. It appears that in the latter case 
bubbles bounce at encounter, whereas in hyperfiltrated water the two bubbles coalesce. 
Apparently the difference in behaviour has to do with surfactive agents. These 
influence both the occurrence of coalescence and the boundary condition prevailing at 
the interface. The two asymptotic cases are : at zero contamination there is coalescence 
and a zero tangential stress condition applies at the interface. At sufficiently high 
contamination a no-slip boundary condition holds, since the surfactives immobilize the 
interface, and also the bubbles bounce. The behaviour in between these extremes is 
neither well understood nor well documented; for a recent review, see Chesters (1991). 
The experience of both Kok (1989) and van Wijngaarden & Kapteyn (1990) is that in 
singly filtrated water the friction force is given with good accuracy by (2.1) for bubbles 
of radius of about 1 mm whereas even at very small amounts of contamination bubbles 
bounce at an encounter. Kirkpatrick & Lockett (1974) find that in a dilute cloud even 
in pure water coalescence is virtually absent. 
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(4 (4 
FIGURE 3. The interaction of two air bubbles rising in water. In (a) the water is hyperfiltrated. The 
two bubbles approach each other along a horizontal path and eventually coalesce. In (6) the water 
is filtrated once. The bubbles have just bounced and then move apart, again along a horizontal path. 
From Kok (1989). 

Based on these experimental findings, we shall assume that bubbles in a pair bounce 
at encounter. This encounter is, as we recall, predicted by the numerical simulation to 
be along a line 0 = $r. In figures 3(a)  and 3(b) this orientation is observed in the 
experiments also. We restrict the analysis therefore to encounters along that direction. 
The question may be asked whether after rebound the relative velocity of the two 
bubbles is in the direction in which they approached each other. For purely spherical 
bubbles this obviously is the case, by symmetry. 

In reality bubbles deform, unless they are extremely small. In figure 4(a) two bubbles 
are sketched approaching each other along a line perpendicular to the direction of 
gravity. The velocity of the centre of mass of the pair has a vertical component only. 
Owing to the attractive force the bubbles have in addition equal but opposite velocities 
along their line of centres. Owing to the non-uniform pressure field the bubbles are 
deformed. The shape is determined by a balance between surface tension and 
hydrodynamically induced pressure forces along the surface. It appears that, because 
the bubbles cannot support a net force, the shape is approximately an oblate spheroid 
with principal short axis along the resultant velocity of the deformed sphere. When the 
bubbles are still far apart this principal axis is vertical, but during approach it turns as 
indicated in figure 4(a). 
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FIGURE 4. An encounter between two rising bubbles. The arrows indicate the velocity with respect to 
the liquid. (a) In positions (1) the bubbles are far apart, their relative velocity is negligible. In positions 
(2) they 'turn' towards each other, as explained in the text. (6) The two bubbles in a pair move away 
from each other (3). In positions (4) the original shape is recovered. 

There is only a buoyancy force on the pair in the vertical direction. After the rebound 
the centre of mass of the pair has a velocity therefore only in the vertical direction and 
the motion will look like that sketched in figure 4(b). Again, at a large distance the 
initial shape will be recovered. 

The picture given here of a binary encounter needs modification perhaps, when the 
reflective symmetry in figure 4 is absent. This is the case when the instantaneous shape 
on approach is not entirely due to buoyancy on the bubble itself and the motion 
induced by the other bubble in a pair. Additional induced velocities are due to other 
bubbles. In the present picture in which only pair interactions are allowed for, it seems 
reasonable to assume that an encounter along 8 = $t results after the rebound in a 
relative motion also in that direction. Further we shall assume a spherical shape first 
and later on discuss the effect of deformations, in particular into oblate spheroids as 
in figure 4. The influence of the deformation into spheroidal form on added mass and 
viscous resistance is dealt with in van Wijngaarden (1991). 

4. Analysis of relative motion 
With dO/dT = 0 and 8 = $r, (2.9) is satisfied and (2.8) can be integrated to give 

= [1-exp{~(q;;13-q-3)}]. (4.1) 
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In this relation qm = R,/a is an integration constant. At the maximum dimensionless 
separation of 27, the relative velocity is zero. A simplification which facilitates the 
following analysis is to approximate the right-hand side of (4.1) by 

or in physical variables 

The relative error in dr]/dT is &(7-3-7;3). With 7, = 4 this is zero at 7/rm = 1 and 
at most 9% at 7 = 1. We shall proceed therefore with (4.3) and (4.2) (when physical 
variables are required). In terms of the governing differential equations, the 
approximation of (4.1) by (4.2) is equivalent with the neglect of the term with (dy/dT)2 
in (2.8). 

From (4.2) it follows that the time spent between r ]  = 7, and 7 = 1 is a numerical 
constant times &,( 1 -7i3)+. For 7, = 2, which means a maximum separation of four 
bubble radii, this is 5.3. Remembering that the timescale is a/Um and that u, as defined 
in (2.10), is of order lo2, we conclude that in general a considerable number of 
oscillations can be performed before the relative motion in a pair is exhausted by 
viscous friction. 

We now analyse the influence of viscosity on the motion in a pair, from 7 = qm to 
r] = 1. With the neglect of (dy/dT)' (2.8) becomes 

1 -  
We introduce 

i j  = = R/a. 

Analysis of (4.4) allows one to distinguish between three intervals. 

Here the relative velocity along the line of centres is still small (though d27/dT2 is not) 
and there is a balance between the inertia force and the 

(i) 0 < 1 -1/7, < O . l 4 ( i j / ~ ~ ) ~ .  

--(-)+&-4 d7 d d7 = 0. 
dTd7 d T  

(ii) 0.14(ij/~,)~ < 1 -7/r], < 1 -f/q,. 
In this region the acceleration force is small and there is a 
attraction, 

(iii) 1 < 7 < f .  
Here there is, as in region (i), a balance between inertia 

attractive force, 

( 4 4  

balance between friction and 

(4.7) 

and attraction, since 

The relative motion is governed, as in zone (i), by (4.6). 
Here it is assumed that f < 7,. As an example, the three regions discussed here are 

summarized in figure 5 for the case l;lm = 10 and a = 1.5 x lop3 m. In the figure 
physical, rather than dimensionless, quantities are used. Near R = a the acceleration 
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FIGURE 5 .  The relative velocity in a bubble pair as a function of Rla for R,/a = 10. In the regions 
indicated (i) and (iii) the relative motion is dominated by inertia. Only in (ii) is viscous friction 
important. 

is very rapid and the bubbles approach each other with a velocity 0.43U,. After 
rebound the same regions, as discussed above, are passed through but now in the 
opposite order. 

From this analysis we draw the conclusion that, provided u is large, the relative 
motion can be described by (4.6), or the integrated form (4.2) of this equation. We 
repeat that for u 9 1 the two bubbles in a pair perform many oscillations before 
friction exhausts the motion. Of course, on a timescale longer than 5 or 6, say, 
oscillations, we must be aware that R, is not a constant but a parameter which 
decreases through the action of viscosity. The way R, decreases and the consequences 
which this has on the behaviour of a bubbly suspension form the subject of the 
following section. 

5. The effect of viscous friction 
Multiplication of (4.4) with dr]/dT allows this equation to be written as 

Since u is large, it follows from (5 .  I )  that on the timescale T the quantity 

is a constant, equal to (cf. (4.2)) 
(5.3) 

This admits the following interpretation. The force -&-* in (2.8) can be derived from 
a potential - &7-3. Without friction the sum of kinetic energy and potential energy, E, 

E = -%-3, 32 m 
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is a constant, equal to -hi3. Owing to viscosity E decreases slowly. The timescale for 
this is 7.  Introducing 7=  t /7 ,  we have, from (2.7), (2.10) and (5.1) 

2 d -E=-(g). d i  (5.4) 

Since, for large r, dE/dfis constant on the scale T, we have by integrating (5.4) over 
the time for q to change from 1 to q,, and using (4.2), 

dE  
d i  
-=-  

The integral in this expression is described with sufficient accuracy by 

Then we obtain 
dE  di = 11qi3. 

Using the expression (5.3) for E and taking qm,o as the value of qrn at f = fo, we find 
from integration of (5.6) 

1 -q-i -- - exp{-(i-roo)}. 
1-7-3 

m.0 
(5.7) 

This shows that eventually q ,  tends to 1, or R, to a. The physical explanation for this 
is that, since the only external force on the system is buoyancy, which is a conservative 
force, there is no energy input in the relative motion, as described here, and eventually 
the motion of the two bubbles in a pair subsides. 

This takes a time, I = 3, say, or r-’T = 3. Therefore, while at large CT there is no 
appreciable change of qm in a few oscillations, qm becomes unity after a time which is 
a multiple of 7,  the relaxation time. This is an interesting result and not dependent on 
our assumption that two bubbles in a pair have their line of centres at right angles to 
the direction of gravity. For, as we have seen in discussing relative motion starting at 
an arbitrary value of this angle, sooner or later an encounter takes place. 

To what extent is this clustering of pairs observed in practice? One single pair rising 
in a stagnant liquid shows this behaviour (Kok 1989). Further, it is known among two- 
phase flow researchers (Saiz-Jabardo & Bourt 1989) that bubble clusters form in rising 
bubbly suspensions at the onset of transition to slug flow. However at volume 
concentrations well below this transition (which occurs at about 30 YO) clustering 
together of bubbles is not observed. The reason for this could be sought in multiple 
collisions. 
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FIGURE 6. Various ways in which interaction with a third, distant, bubble increases the energy in the 
relative motion. The full arrows indicate direction and magnitude of the force exerted by the distant 
bubble, while the broken arrows indicate the direction of the relative motion of the pair. 

In figure 6 some situations are sketched in which a pair is in interaction with a third 
bubble at some distance. In all the cases shown there, the interaction with the third 
bubble feeds energy in the relative motion. The question is whether such encounters of 
a pair with an isolated bubble are frequent enough, and the associated energy transfer 
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large enough to compensate for the loss of energy due to viscous forces. We shall return 
to this in $9 after the analysis of the vertical motion of bubble pairs. 

If the liquid is not stagnant, but flows at such a velocity that its motion is turbulent, 
this turbulence will no doubt affect the motion of bubbles which are suspended in it, 
and vice versa, as for example shown in the experimental work of Lance & Bataille 
(1991). In this paper we shall not investigate the mutual interaction between bubbles 
and turbulence, but restrict ourselves to phenomena with (viscous) potential flow 
around the bubbles. 

Since this work was submitted, a numerical simulation of bubbly flow has been made 
by Sangani & Didwania (1993) while a numerical calculation for a mixture in a box 
with periodic boundary conditions has been made by Smereka (1993). The clustering 
in horizontal aggregates is also observed in these works. 

6. Probability density distribution 
After the necessary preliminaries we proceed now to the calculation of the 

probability P(x, R, R,, t ) .  This is defined here such that the probability of finding one 
bubble in x and another in x + 2R at time t, the pair having during relative motion a 
maximum separation 2R,, is given by 

Pd3xd3R d3R,. 

As an alternative to R,, we could have chosen A, connected with R, by (5.2) (when 
written in physical coordinates). 

Suppose there are N bubbles in a volume "Y, giving for the number density f i  = 
N / V .  The probability of finding a bubble centre between x and x + dx is P(x) d'x. The 
number density equals P(x), since 

P(x)d3x = N. 

We shall consider spatially homogeneous mixtures in which 6 does not depend on x. 
This is the case, for example, in a suspension rising under buoyancy, if we neglect the 
influence of the hydrostatic pressure distribution on the size of the bubbles. We 
therefore omit x in the argument of P. Integration of P over R for fixed x must give 
N ,  since each bubble takes part in N- 1 (= N for large N) pairs. In our case, to get N 
requires an additional integration over R,, since we have divided pairs into subsets 
with the same energy, represented by R,. Therefore we have 

I 

Pd3R d3R, = N. 55 
The probability density function P obeys a Liouville equation 

which expresses the conservation of bubbles in phase space. On the short timescale for 
which a /Um is representative, R, is constant as the analysis of the preceding sections 
has shown. So, on this timescale there is an equilibrium distribution for given R,. On 
a longer timescale R, changes and therefore P also changes. It is therefore helpful to 
introduce the conditional probability density P,(R/R,) as 

(6.3) P(t, R, Rm) = P,(R/Rm) p(t, Rm). 
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The conditional probability density expresses the probability of finding a pair with 
distance between them 2R, given the maximum separation to be between 2R, and 
2(R, + dR,). 

Moreover we make use of the analysis in $2 where it was argued that among all 
possible orientations, those with the separation vector positioned in a plane with 
normal parallel to the direction of gravity have much higher probability than others. 
We take R and R, in such a plane, and write the probability of finding a pair with 
distance between 2R and 2(R+dR), the maximum separation being between 2R, and 
2(R, +dR,), taking into account (0.3) as 

4rc2P,( R/ R,,,) P( 2, R,) RR, dR d R,. (6.4) 

The interval in which R can lie is between R = a and R = R,. The maximum 
separation 2R, is restricted to 2a on one side and to some large value 2R on the other 
side. We shall eventually allow R to become infinite. On the short timescale the relative 
motion is not retarded by viscous forces. For each pair R, is constant and in 
equilibrium P does not depend on t .  Taking this into account, introduction of (6.3) in 
(6.2) gives for P, 

d 
--(RRP,) = 0. 
dR 

Note that, since interactions take place in the horizontal plane, R is replaced by its 
modulus R. In $4 we have a solution, (4.3), for Rz rather than R. In order to use this 
in solving (6.5) we multiply (6.5) with R to obtain 

dP, dR2 
dR 

P,R~+R.R~-+~P~R- dR = 0. 

Solving for Po gives, with A(R,) being an unknown function of R,, 

In specifying A(R,) we must keep in mind that P, decomposed according to (6.3), must 
satisfy (6.1). We shall require here that 

2x J: .P,(R/R,) RdR = N .  

Inserting (6.7) in (6.6) gives 

(1 - R3/ R;): 
A(R,) = N{ JIrn 

Thus we have for P, 

J, (1 - R3/R3,)i 

From (6.1), (6.3) and (6.9) it follows that this choice for 
const rain t 

rrz 
2~ J P( t ,  R,) R,dR, = 1. 

a 

A(R,) puts on P(t ,  R,) the 

(6.10) 
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The result (6.9) can be interpreted in the following way: using (4.3) and (6.10) we see 
that the probability 2nRPo(R/R,)dR, of finding at given R, the separation of a pair 
to be between 2R and 2(R+dR), is 

(6.1 1) 

J a  

This is apparently equal to N times the time spent between R and dR, as a fraction of 
the total time it takes from R = a to R = R,. The result (6.9) therefore looks 
reasonable. Information about P(t,  R,) is obtained from the Liouville equation (6.2) 
by integration over R, which gives 

a q t , ~ , )  1 a 
+--{P(t, R,) R, R,} = 0. 

at Rm aRm 
(6.12) 

When only interaction in pairs occurs, no other processes being allowed for, no 
stationary probability density is possible. In fact, we can calculate the evolution in time 
by inserting dR,/df, from (5.3) and (5.6), into (6.12). From (5.3) and (5.6) we have, in 
terms of f =  t /7  and remembering that 7, = R,/a, 

dR,/di= 2{R,-a(R,/a)~}. (6.13) 

The integrated form of this relation is (5.7) which gives, for a value R,(fo) at time fo, 
a reduction at a time f >  fo to 

Rk = a[l-[l -{a/R,(fo)}~]exp -(f-fo)]-*. (6.14) 

The probability density P(?, RL) for this time f and the value RL can be found from 
(6.12) as follows. Multiply (6.12) with R,, write Y = R, P,, to obtain, using (6.13) for 
Rm, 

The characteristics of this equation are given by (6.13) and along these we have, using 
(6.14) 

dY - = Y[I -{I -(U/R,(~~)$} -exp(f-fJ]-l. 
dt 

Integration of this equation, writing R& instead of R, and requiring that at f =  io, 
where R, = Rm(f0), P has the value P(to, Rm(fo)) gives, after substituting back PR, 
for Y, 

P(?, RL) = P(F0, Rm(f0)) r$:r - exp (i- i0). (6.15) 

While (6.14) shows how in the course of time a particular value of R, decreases, (6.15) 
shows that the probability density for a certain R, increases in time. This is caused 
by the fact that there is in phase space an inflow, through a surface of constant R,, 
from larger values of R,. After a sufficiently long time this leads to a catastrophe in 
R, = a, or in physical terms, all pairs come together ultimately. 

This is not observed in practice, at least not with a stable rising suspension. 
Mechanisms to prevent such catastrophes are, as discussed in 0 5 ,  multiple interactions 
and, at significant liquid velocity, turbulence. It should at this point be emphasized that 
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RIRm 
FIGURE 7. The probability density as given in (6.17), as a function of RIR,,,. 

the conclusion of all pairs converging towards R, = a at large times is not a result of 
our neglect of separation vectors oriented other than normal to the acceleration of 
gravity. In $4 it has been shown that in all pairs, whatever their starting position, the 
bubbles ultimately approach each other along that direction. Our assumption has only 
been that pairs are always oriented with the separation vector in a plane with normal 
parallel to gravity. 

In $9 we shall briefly discuss the influence of encounters of a pair with a third bubble 
on the behaviour of R,. For the remainder of our analysis we shall assume that P(R,) 
has the same value for all R, between a and R. Then it follows from (6.10) that 

Taking (6.3), (6.9) and (6.16) together gives finally, with 

n = N/2x R,dR,, I 
Rt/( 1 - R3/R3,)i 
TRm 2 d d R  

P(R, R,) = n 

(6.16) 

(6.17) 

J, ( 1 - ~ 3 / ~ 3 , ) i  

In figure 7, 2nRR, P(R, R,)/n is shown for R,/a = 2.5. We see that for given R,, P 
increases as a function of R. However, integration over R, from R to R shows that the 
total probability of finding a separation 2R decreases with R, because with increasing 
R there are fewer available values of R,, namely those larger than R. Since the 
interactions take place in a plane normal to the direction of gravity the quantity n is 
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the number density in a plane. This can be related to the concentration a in the 
following way. Each bubble of radius u cuts on the average gnu2 out of a plane. The 
volume concentration a is also the total fraction of a given plane surface occupied by 
gas, whence 

a = $nnllu2, 

or nu2 = 3a/2n. (6.18) 

We conclude that if pairs of bubbles periodically approach and bounce along a 
horizontal line, the probability density has the form expressed in (6.17). In the next 
section we calculate the mean rise velocity of a mixture, based on this probability 
density . 

7. The mean vertical gas flux 
As discussed in $2, the equation for relative motion in a pair is obtained by 

subtracting from each other the equations of the individual bubbles. Likewise, by 
addition we obtain an equation for the velocity of the centre of mass of the pair, 
because the forces exerted by one on the other cancel. This equation can, of course, 
be formulated with respect to many frames of reference, for example a laboratory 
frame, a frame moving with the liquid or a frame moving with the total volume flow. 
The latter has been proven to be useful in the theory of dispersions and we shall employ 
such a frame here. The volume flux will be indicated by U,. The forces occurring in the 
force balance are 

(i) a buoyancy force, pgV, where V is the volume of each bubble in the pair, 
(ii) a frictional force 

and 
(iii) the inertial reactive force which bubbles experience when their impulse changes. 

The impulse consists of the product of the velocity with respect to the volume-flux 
velocity (u- U,) with the virtual mass M(R). This force balance has also been discussed 
in a recent paper by van Wijngaarden & Kapteyn (1990), where the dependence of M 
and f on the deformation of the bubbles was also pointed out. We shall first assume 
bubbles to be spherical and come back later to the influence of deformations. 

AR) (u - Uo) (7.1) 

Taking these three forces together, gives the equation 

The functions M(R) andAR) are, in view of the accuracy used here, needed only up 
to and including terms of order (a/R)3. In principle they can be calculated to any order 
of accuracy. Referring to van Wijngaarden & Kapteyn (1990) we have to this order 

M(R) = $px~~{l+O.l9(~/R)~}, (7.3) 

AR)  = 1 2 ~ p { l + O . l 3 ( ~ / R ) ~ } .  (7.4) 
When we substitute (7.3) and (7.4) in (7.2), the quantities U, and 7,  defined in (2.2) 
and (2.4) respectively appear naturally and we obtain 

(7.5) 
d 
dt 

7-[{u- U,>{l+O.l9(u/R)~}]+{u- U,}{l +0.13(a/R3)} = u,. 

From this we can now derive an expression for the average of (u- U,). However, this 
has to be done with some care, since (7.5) is for pairs, whereas we need an ensemble 
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average over all possible realizations of N bubbles. With a probability density 
distribution which is stationary in time, an ensemble average is the same as a time 
average. Averaging the terms of (7.5) we see that, with the time-independent 
probability function (6.17), the first term on the left-hand side of (7.5) gives no 
contribution. We shall focus therefore on the second term on the left-hand side of (7.5). 

Note that (u-U,)  in (7.5) is the vertical velocity of the centre of mass of a pair. 
Averaging of this does in general not give the average vertical bubble velocity because 
of vertical motion of individual bubbles with respect to the centre of mass. However, 
in this case relative motion of bubbles in a pair is in a horizontal plane only. 

If we consider a quantity G, the average value of G is formally 
. c  

where C,, denotes a configuration of N bubbles. P(C,)dC, is the probability of such 
a configuration : 

P(C,) dC, = P(x,, x,, .. ., x,) d3x, ... d3x,. 

It is the probability of finding the first of N bubbles in xl, the second in x,, and so on. 
It is well known (see e.g. Batchelor (1972) that at low concentration a, 

E(G) = G ( x , x - ~ - ~ R ) P ( x , x + ~ R ) ~ ~ ( ~ R ) + O ( ~ ~ ) ,  (7.6) J 
where we recall that the spatial number density is indicated by E to distinguish it from 
the 'number density in the plane' in, e.g. (6.18). 

This reduction to an interaction between the test bubble in x with only one other 
bubble, in x+2R,  is only permitted when the quantity G falls off fast enough at 
increasing distance 2R. The quantity (u- U,) in (7.5) does not possess this property 
since when R is large (u- U,) tends to (U, - U,). We write therefore 

(24-U,) = U,+{(u-U,)-U,) .  

( u - U , )  = U,-(0.13a3/R3) U,. (7.7) 

We introduce this into the left-hand side of (7.5) and obtain, using (7.4) and the 
definition (2.2) of U,, 

To obtain this result, it must be kept in mind that the first term on the left-hand side 
of (7.5) does not contribute to the average of (u- U,). Further it should be recalled, 
that in the relation forflR) only the term in (a3/R3) is taken into account. This is not 
strictly necessary since with some effort any number of terms could be included. 
However, in order to obtain the average indicated in (7.7), we are going to use the 
probability density (6.17), and this, as the reader might remember, is restricted to terms 
of order (a4/R4), whereas the next terms on the right-hand side of (7.4), and also of 
(7.3), are of the form (a/R)'. 

We want to calculate the average ( u -  U,), using the probability density derived in 
$6. As is shown by the normalization relation (6.1), the probability density P there is 
understood as the probability of finding a bubble in x + 2R given that there is one in 
x. The probability density used in (7.6) is the pair probability density. The pair 
probability function as used in (7.6) is obtained from (6.17) by multiplication with n. 
Bearing this in mind, evaluation of (7.7) with help of (6.17) gives 

( (u -U, ) )  = U,-tlU, ~ILR,H;'(R,)H~(R,)~R,, (7.8) 
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where 
d d R  

H,(Rrn) = J:m (1 - R3/Rk)4' 

dR fi" d(1 -  R3/Rk)i' 
H,(R,) = 0 . 1 3 ~ ~  

73 

(7.9) 

(7.10) 

The integral in (7.9) is of the form given in (5.5) and hence is 

H,(R,) x $&,(l -u3/R3,)! 

H ,  can be reduced to an integral of the form of H I  by partial integration, which gives 

H ,  = 0.13~;[2(1 - u ~ / R ~ ) ~ - $ ( u / R , ) ~ ( R , / ~ ) ~ ( ~  -u3/R3,)i]. 

Introducing these results for HI and H ,  in (7.8) gives 

(u-U,) = Urn{ 1 -0.13nnu:(3J; R$dRm-2ui[: Rk2dR,)} 

= Urn{ 1 - 1 . 0 4 ~ n ~ ~ } ,  

with R+m. Finally, by using (6.18), this gives in terms of the volume concentration 
a the result 

( u - U , )  = U,{1-1.56a)+O(~~~). (7.1 1) 

Using the complete series forAR) in (7.4) gives 1.43 instead of 1.56 in (7.1 1). However, 
it is hard to say whether this is more accurate since, as we have stressed, terms of order 
(u/R)~ and higher have been neglected in calculating the probability density. 

8. Comparison with experiments, and discussion 
The result (7.11) is valid under the assumption, made in the theory, of spherical 

bubbles, all of the same size. The only experiments reported in the literature where the 
latter condition is satisfied are those by van Wijngaarden & Kapteyn (1990). They 
carried out experiments with suspensions consisting of filtrated tap water and bubbles 
with an effective radius of 1.4 mm, with a spread of 0.25 mm. These bubbles are 
certainly not spherical, but oblate spheroids with a ratio of longer axis to shorter axis 
of about 1.8 (van Wijngaarden & Kapteyn 1990). The measured value of Urn for these 
bubbles is 

which is very close to the value given in Clift, Grace & Weber (1978) for pure water. 
The speed of rising of uniform suspensions of these bubbles in water was measured by 
van Wijngaarden & Kapteyn (1990), with the result 

(8.2) 

It is interesting to note that the constant outside the brackets in (8.2) is smaller than 
U,. Of course, for a 3 0, u- Uo must approach Urn. The linear behaviour in (8.2) leads 
apparently to a lower value, when extrapolated to a = 0, which indicates that between 
a = 0 and a = 0.02 (u- 17,) changes more rapidly than linearly. The slope 
d( u- U,)/da is according to these measurements constant between a = 0.02 and 0.15 
and has the value, from (8.2), of 0.40. The corresponding value of this slope predicted 
by our theory is, from (7.11) and using (8. l), 0.42 which is close enough. 

In the context of his experiments on void fraction waves BourC measured the speed 
of rising of uniform bubbly suspensions. In these experiments the spread of bubble 

Urn = 0.27 m/s, (8.1) 

(u- U,) = 0.223(1- 1,78a), 0.02 < 01 < 0.15. 
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sizes is larger (BourC, private communication) then in the experiments by van 
Wijngaarden & Kapteyn (1990). BourC (1988) gives the result 

The coefficient preceding a is somewhat larger than in (8.2) but this can be attributed 
to bubble deformation. 

In our analysis we have considered only spherical bubbles. In practice, the bubbles 
under discussion for which the Reynolds number of the relative motion is large will be 
deformed. Deviations from the spherical shape affect properties like virtual mass and 
frictional force and therefore will also have an effect on the average velocity of rising. 
Because oblate spheroidal bubbles have a larger resistance than spherical bubbles of 
the same volume, one would expect that, other things being equal, the speed of rising 
of a suspension of oblate spheroidal bubbles is somewhat lower than with spherical 
bubbles. It should be interesting to investigate the influence of deformation on the 
analysis in this paper, although it will be difficult to account for fluctuations in the 
shape during interaction. Including the influence on the average shape is feasible as 
shown in van Wijngaarden (1991), where the effect of deformation on the stability of 
voidage waves in bubbly flows is investigated. 

In the writer's opinion the present work shows, based on physical arguments, that 
for bubbles of the size of a few millimetres, characteristic times are such that 
interaction can be analysed using potential flow theory for the relative motion. The 
result for the probability density hinges, apart from the description of the flow as 
potential flow, on the assumptions of bouncing and of interactions taking place mainly 
in a plane. The bouncing of an isolated pair of bubbles is clearly shown in the work 
of Kok (1989) reported in $3. Regarding the second assumption, the present author 
feels that the analysis together with the numerical results by Kok (1989) warrants this 
assumption. 

Finally, in order to get some more insight in the meaning of our result, we look at 
what other probability distributions give as mean velocity of rise. First we take 
randomly distributed bubbles. Then, 

( u - Uo) = 0.22( 1 - 2.254. (8.3) 

(8 -4) I P(xIx+2R) = 0 when R < a 
P(xIx+2R) = ii when R > a. 

The liquid velocity qnd induced in x by the bubble in x + 2 R  is 

which is the velocity induced in x + 2R by a dipole of strength U, a3 in the direction 
e, situated in x. In the absence of this induced velocity the bubble in x would attain the 
velocity U, with respect to U,, in the direction of e. In the presence of the other bubble 
buoyancy must now also overcome the induced velocity expressed in (8.5). In van 
Wijngaarden & Kapteyn (1990) it is shown that, with velocity u of the bubble in x, its 
drag is 

The average of this in the direction e must equal pgV.  This means that 

In the second term u- U, can be replaced by U, e, whence 
( (u-  uo>.e)-(2{(u- Uo).e){(ujntj- Uo)*(u- UO)}/(u- uJ'> = 

( (u- Uo).e) = uI,+(2(Uind-Uo)*e). (8 6 )  
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Carrying out the averaging using (8.4) and (8.5) we encounter the familiar phenomenon 
of non-uniformly convergent integrals. This difficulty can be overcome by Batchelor’s 
(1972) renormalization method. In this case this means noting that, when tc denotes the 
local velocity vector either in gas or in liquid, we have by definition 

J(u - U,) P(C,) dC, = 0. 

Subtracting the conditional and unconditional average, we may write in the two- 
bubble approximation 

(8 * 7) 2((u-U0).e) = 2 { ( u - U ~ ) { P ( ~ ~ ~ + ~ R ) - P ( ~ ) } ~ ~ R .  I 
From (8.4) it follows that the region R > a does not contribute to the integral on the 
right-hand side. The region 0 c R c+, where v-e = U,, contributes to the first 
order in a, 

2AI -U,d3R=-2aU,. (8.8) 
sphere 

In the region < R < a, the velocity v -  U, can be approximated by the right-hand 
side of (8.5) which gives a zero contribution. The result is therefore, from (8.6)-(8.8), 

The coefficient in the a-term is larger than the corresponding one (1.56) in our result 
(7.1 l), and also than in the a-term in the experimental result (8.2). The expression on 
the right-hand side of (8.9) is an average over pair configurations, among which there 
are many with rise velocity larger than U,. Nevertheless the result is smaller than that 
of a calculation in which all lines of centres are horizontal and pairs move slower than 
U,. This looks surprising at first sight. The reason is in the displacement flow. In the 
region inaccessible to other bubble centres, :a < R c a, bubbles carry fluid with them, 
in principle. This is I u-ed3R. 

For randomly distributed bubbles, we saw above that this is zero, giving no need for 
a compensating fluid flow. However, if pairs are considered with only horizontal lines 
of centres, the above integral gives, evaluated with (8.5), -$U,a2. This is a 
downflow which is compensated by a corresponding upflow +XU, .a2 = %Urn a, in the 
space accessible to bubble centres. 

Therefore doing the calculation of the mean rise velocity for pairs, arranged in a 
horizontal plane, but with P(R) constant, for R > a, we find 

( u - U o ) -  = U,-2aU,+$zU, = U,(l-l,25a). 
This is larger than the result U,(l- 1.56a), found in $7 (cf. (7.1 1)). Both are for pairs 
in a horizontal plane, but in the calculation leading to (7.11), P(R) decreases with 
increasing R, as mentioned in connection with (6.17). This means that there are, 
relative to the random distribution, less pairs with larger R and correspondingly 
relatively high rise velocity. 

(u -  U,) = U,(1-2a). (8.9) 

at2 < R <a 

9. Interaction between a bubble pair and a distant third one 
In $6 we found that, under the restriction of binary interactions, the kinetic energy 

of relative motion of a pair gets exhausted gradually, with clustering as an eventual 
result. It was suggested that multiple encounters inject energy in the relative motion, 
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____) 
2R 

FIGURE 8. A bubble pair 1,2, distance 2R apart, in interaction with a distant third one, 3, at 
distance r from I .  8 is the angle between r and the vertical direction. 

thereby counteracting the tendency to clustering. The natural candidate for 
representing multiple interactions is the interaction between a pair and a, distant, third 
bubble. We consider this here, as sketched in figure 8. 

Bubble 1, in x, and bubble 2, in x+2R,  form the pair. The third one is in x + r .  In 
the foregoing sections we have, in fact, considered the situations where r is so large that 
its influence on the pair can be neglected. Here we look at ‘third’ bubbles for which 
r is still large with respect to a or R, (a multiple of order one of a), but not infinite. 

During one full cycle whereby R increases from a to R ,  and back, bubbles 1 and 2 
experience a viscous force of average magnitude 

= 8npaU,(a/R,)$ 1 -a/&) (1 - a3/R3,)-? 

Now we consider bubble 3, at distance r(r 9 R,) from 1. The force exerted by 3 on 1 
and given, with 2R instead of I, by the right-hand side of (2.5) and (2.6), can be 
expressed as the gradient of a potential SZ, say, given by 

(9.2) 

The special case 8 = :n is mentioned in the beginning of $5. If the same force were 
exerted by 3 on 2, no relative motion would be induced. We must look therefore at the 
difference of VSZ evaluated at x and at x+2R.  Moreover, we need the component of 
this in the direction of R.  Let e be a unit vector in that direction. Then, at given 
separation 2R, the resultant force in the direction e is 

SZ = &pV, a6/r3(3 cos2 8 - 1). 

G = (-2R-VVSZ)-e. (9-3) 

When, at the considered position, k is in the direction of R this force increases the 
energy in the relative motion. At fixed r there is a second instant during a cycle at which 
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the separation is again 2R, whereby energy is reduced by the same amount. However, 
during the interval bubble 3 does not remain at the same place but moves with respect 
to the pair formed by 1 and 2. 

According to (7.7) bubble 3 outruns the pair over a distance of about 0.1 3a3/ Rk Urn 
per unit time. The exact value of this distance, which we denote with Az, z being a 
coordinate in the vertical direction, in the time interval between two positions with the 
same R, from (7.7), is 

For a given value of R the net force, injecting kinetic energy in the relative motion, is 
the difference between G at position r and a position r + Az in the vertical direction. 
Since (9.4) shows that Az is of order a, and therefore small with respect to r, to evaluate 
this difference we may expand G around r, 

G(Az) = AZ - + ~ A z ) ~  - +.... 
(:)r (Zz:) (9.5) 

To find the average of the right-hand side of ( 9 . 9 ,  we must evaluate the z-derivatives 
with help of (9.3), integrate over r and a full cycle of R ,  after multiplication with the 
probability density P(x+r). In the present context, which is to make an estimate of the 
average inertial force exerted by bubble 3, we ignore the effect of the interaction on the 
probability density and take P(x + r) = 6. From (9.2) and (9.3) it follows ( z  = r cos IY), 
that aG/az is an odd function of z and therefore the first term on the right-hand side 
of (9.5) does not contribute to the integral over r. We calculate therefore the average 
of the second term on the right-hand side of (9.5). 

Introducing x, as an orthogonal coordinate in the plane normal to g, in the direction 
of R ,  we have to evaluate, from (9 .3H9.5)  

The integral over R gives 0.58R1, as the leading term, whereupon integration of the 
remaining expression with use of (9.2) results in, to leading order in (a/R,) ,  

(G) x 0.02apU2, a2(a3/Rk), (9.6) 

where use has been made of the relation 

a = 3tiia3. 

To the same accuracy, in terms of a/R,, the average frictional force is, from (9.1), 

(F) - 8npa U,(a/R,)? 

From (9.6) and (9.7) we find for the ratio ( G ) / ( F ) ,  

(9.7) 

(G)/(F) = O.Olar(a/R,)~, (9.8) 

where the definitions (2.4) and (2.10) for T and r, respectively, have been used. 
This could be significant for large r and not too small a. When u = lo2, a = 10 %, 

R, = 3 4  the right-hand side of (9.8) is only 0.02. This suggests that multiple 
encounters may be significant, but presumably not able to compensate for the tendency 
to cluster which we found in our study of binary interactions. 
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A. Biesheuvel and J. H. Lammers. 
During the preparation of this paper the author enjoyed very useful discussions with 
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